

Institut Jules Bordet Jules Bordet Instituut

Targeted Therapies in Breast Cancer: Optimal Use of m-TOR Inhibitors

Philippe Aftimos, M.D.

Clinical Pharmacology Unit

Institut Jules Bordet

Brussels, Belgium

4th International Congress of Breast Disease Centers 2014 February 7th, 2014

ER positive / HER-2 negative Breast Cancer

ATLAS: 5 versus 10 years of Tamoxifen

Davies C et al. Lancet 2013

Aromatase Inhibitors: Upfront or Sequential

Mouridsen H et al. NEJM 2009

Reciprocal crosstalk between estrogen receptor (ER) α and growth factor receptor signaling pathways.

Miller T W et al. JCO 2011;29:4452-4461

Proof of Concept Phase I Trial: Everolimus addon after Progression on Letrozole

	All patients ($n = 18$)	RAD001 5 mg/day (n = 6)	RAD001 10 mg/day (n = 12)
Disease status on letrozole alone			
Duration of letrozole alone median (range) (mo) ^a	15.0 (1.7-49.2)	12.4 (2.3-27.7)	26.0 (1.7-49.2)
Best response on letrozole alone (n)			
Stable disease	15	5	10
Progressive disease	1	0	1
Unknown	1	0	1
Not applicable	1	1	0
Best response to combined treatment			
Overall response (CR or PR) (%)	1 (5.6)	0	1 (8.3)
Complete response (%)	1 (5.6)	0	1 (8.3)
Duration (mo) ^b			22.3
Partial response (%)	0	0	0
Stable disease (%)	9 (50.0)	4 (66.7)	5 (41.7) ^c
Stable disease >6 mo (%)	6 (33.3)	2 (33.3)	4 (33.3)
Duration (mo) ^d		14, 21	8, 13, 17, 23
Progressive disease (%)	5 (27.8)	2 (33.3)	3 (25.0)
Unknown (%)	3 (16.7) ^e	0	3 (25.0)

Awada et al. Eur J Cancer 2008.

Randomized Neoadjuvant Phase II Trial: Letrozole + Everolimus/ Placebo

Response by evaluation type	Letrozole + Everolimus N = 138	Letrozole + N = 132	- Placebo
Clinical Palpation	68%	59%	p = 0.06*
Ultrasound	58%	47%	p = 0.04*
Mammography	36%	39%	p = 0.7

* Significant

Randomized Trials: AI-refractory/ resistant

Treatment	setting	Pre treatment	phase	n	Effect on primary endpoint
Tamoxifen +/- everolimus (Bachelot, J Clin Oncol, 2012)	metastatic	Resistant to Al	Phase II randomized	111	Clinical benefit rate: 61% (47-74) vs 42% (29-56)
Exemestane +/- everolimus (BOLERO II) <i>(Baselga, NEJM, 2012)</i>	metastatic	Resistant to NSAI	Phase III registration	724	Primary endpoint: PFS HR: 0.43 (0.35-0.54) Median PFS: 6.9 vs 2.8 p<0.001

Overall survival in the intention-to-treat population for the overall patient population.

Bachelot T et al. JCO 2012;30:2718-2724

BOLERO-2: Phase III Trial

PFS by Central Assessment

Baselga J et al. NEJM 2012

BOLERO-2: Phase III Trial

Baselga J et al. NEJM 2012

Unanswered Questions

- First-line setting?
- More toxic than chemotherapy?
- Role of exemestane?
- PI3K-AKT-mTOR pathway beyond progression?
- **Biomarkers?** (last part of the presentation)

Phase III Trial in the 1st Line Setting: Letrozole + Temsirolimus / Placebo

Wolff A et al. J Clin Oncol 2013

mTOR activation can be acquired during disease progression and/or treatment exposure

Long term estrogen deprivation induces mTOR activation

Discrepancies primary versus metastases

		Metastasis negative	Metastasis positive
pAkt	Primary negative	0	6
	Primary positive	5	12
p4E-BP1	Primary negative	2	4
-	Primary positive	4	13

Akcakanat, Cancer;2012

Courtesy A. Awada

Everolimus Toxicity in RCTs

	Tam	Tam + Eve		Exe + Pbo	Exe + Eve
Fatigue	53%	72%	Fatigue	26%	33%
Stomatitis	7%	56%	Stomatitis	11%	56%
Anorexia	18%	43%	Anorexia	10%	29%
Infection	19%	35%	Infection	6%	14%
Rash	7%	44%	Rash	6%	36%
Diarrhea	11%	21%	Diarrhea	16%	30%
Pneumonitis	4%	17%	Pneumonitis	0%	12%
Lymphopenia	21%	48%	Thrombocytopenia	<1%	12%
Neutropenia	19%	48%	Hyperglycemia	2%	13%

Tamrad

BOLERO-2

BOLERO-2 Trial: Quality of Life Assessment

- European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 (EORTC QLQ-C30)
- HRQOL was assessed at baseline and every 6 weeks thereafter until disease progression and/or treatment discontinuation
- Baseline global health status scores were found to be similar between treatment groups
- Time to definitive deterioration: 8.3 months with EVE + EXE versus 5.8 months with PBO + EXE (hazard ratio, 0.74; P = .0084)

BOLERO-6: FDA "Imposed" Trial

ClinicalTrials.gov Identifier:NCT01783444

PD: start exemestane

PD: add everolimus

CR on exemestane

PR on exe + eve

Exemestane + Everolimus Progressing Patients : Is There Any Rationale to Keep « the Pressure » on the PI3K/mTOR Pathways ?!

placebo

Courtesy A. Awada

Future Strategies

Other Combinations?

- mTOR inhibitors + IGF1-R inhibitors
- mTOR inhibitors + PI3K inhibitors
- mTOR inhibitors + CDK 4/6 inhibitors

More Specific Inhibition?

- Pan-PI3K inh: BKM120,...
- PI3K-alpha inh: GDC-0032, BYL719,...

Name	Target
BKM120	Pan-PI3K
(Buparlisib)	
XL-147	Pan-PI3K
GDC-0941	Pan-PI3K
BYL-719	p110-α
GDC-0032	p110-α
INK-1117	p110-α

PI3K inh in Clinical Trials

Ongoing Adjuvant Trials of Everolimus in ER+ BC

Phase	Setting	Trial	Treatment	Objective	Trial
		Population	Schema		Identification

3		At least 4+ LNs after surgery or at least 1+ LN if neoadjuvant chemotherapy	Everolimus 10 mg/day or placebo add-on to endocrine treatment after 3 years of start to	<u>Primary</u> : DFS	NCT01805271
	Adjuvant		complete 5 years		
3		High risk early breast cancer	Everolimus 10 mg/day or placebo for 1 year add-on to adjuvant endocrine treatment	<u>Primary</u> : DFS	NCT01674140

HER-2 positive Breast Cancer

PI3K-AKT-mTOR and Trastuzumab Resistance

Berns K et al. Cancer Cell 2007

Andre F et al. JCO 2010;28:5110-5115

Everolimus + Trastuzumab-chemo Combo after **Progression on Trastuzumab-chemo**

		Everolimus Cohort						
	5 mg Daily (n - 6)		10 mg Daily (n - 17)		30 mg Each Week (n - 10)		All (N - 33)	
Characteristic	No.	%	No.	%	No.	%	No.	%
Resistant to trastuzumab‡	6	100	17	100	9	90	32	97
Pretreated with taxanes	6	100	16	94	9	90	31	94
Resistant to taxanes‡	5	83	6	35	2	20	13	39

Table 1. Baseline Patient Demographic and Clinical Characteristics

Best Response	5 mg Daily (n – 5)	10 mg Daily (n – 13)	30 mg Each Week (n - 9)	A <u>(N –</u> No.	 <u>27)</u> %
CR	1	1	0	2	7
PR	4	3	3	10	37
SD	0	8	5	13	48
PD	0	1	1	2	7
Clinical benefit rate, CR + PR + (SD ≥ 24 weeks)	5	8	7	20	74

Andre F et al. J Clin Oncol 2010

Ongoing Phase III Trials with Everolimus + Chemo + Trastuzumab

	Patient population	Ν	Design	Treatment Arms	Stratification factors	Endpoints	Results
BOLERO-1	HER2+ ABC. First-line.	719	Randomization 2:1	Everolimus or placebo 10 mg/d + Paclitaxel 80 mg/m2 days 1- 8-15 + Trastuzumab 2 mg/Kg weekly: 28-day cycle	 Prior adjuvant or neo-adjuvant trastuzumab Visceral metastases 	 Primary: PFS Secondary: ORR, OS, safety, PK, biomarkers 	Not yet reported.
BOLERO-3	HER2+ ABC. Prior taxane therapy and resistance to trastuzumab	569	Randomization 1:1	Everolimus or placebo 5 mg/d + Vinorelbine 25 mg/m2 days 1-8-15 + Trastuzumab 2 mg/Kg days 1- 8-15: 21-day cycle	Prior lapatinib Number of prior chemotherapy regimens for advanced disease (1 versus 2-3)	Primary: PFS Secondary: OS, ORR, safety, PROs, lab measures	PFS: 7 months versus 5.78 months in favor of everolimus *

BOLERO-1: ClinicalTrials.gov Identifier: NCT00876395

BOLERO-3: J Clin Oncol 31, 2013 (suppl; abstr 505)

Trials with Anti-HER2 Agents and mTOR Inhibitors

Phase	Setting	Trial population	mTOR inhibitor	Anti-HER-2 agent	Chemotherapy	Endocrine agent
1b/2	Metastatic	HER-2+, trastuzumab refractory	Temsirolimus	Neratinib	None	None
2	Metastatic	HER-2+, trastuzumab refractory	Ridaforolimus	Trastuzumab	None	None
2	Metastatic	HER-2+, CNS metastases allowed	Everolimus	Lapatinib	None	None
2	Metastatic	HER-2+ with brain metastases	Everolimus	Trastuzumab	Vinorelbine	None
1b/2	Metastatic	HER-2+ with brain metastases	Everolimus	Lapatinib	Capecitabine	None
2	Metastatic	ER+, HER-2 + or - after progression on lapatinib and letrozole	Everolimus	Lapatinib	None	Letrozole

What role for mTOR inhibitors in HER-2+ BC in the era of T-DM1?

Verma S et al. NEJM 2012

Triple Negative Breast Cancer

Candidate targets and pathways in triple-negative breast cancer.

Annals of Oncology

Berrada N et al. Ann Oncol 2010;21:vii30-vii35

© The Author 2010. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org

TCGA Breast Cancer

"PI(3)K pathway activity, whether from gene, protein, or high PI(3)K/AKT pathway activities, was highest in basal-like cancers: loss of PTEN and INPP4B and/or amplification of PIK3CA"

Nature 2012

Subtype	Basal-like			
ER ⁺ /HER2 ⁻ (%) HER2 ⁺ (%) TNBCs (%) TP53 pathway	10 2 80 <i>TP</i> 53 mut (84%); gain of <i>MDM</i> 2 (14%)			
PIK3CA/PTEN pathway	PIK3CA mut (7%); PTEN mut/loss (35%); INPP4B loss (30%)			
RB1 pathway	RB1 mut/loss (20%); cyclin E1 amp (9%); high expression of CDKN2A; low expression of RB1 Basal signature; high proliferation			
mRNA expression				
Copy number	instability; 1q, 10p gain; 8p, 5q loss; MYC focal gain (40%)			
	TP53 (84%); PIK3CA (7%)			
DNA mutations	Hypomethylated			
DNA methylation	High expression of DNA repair			
Protein expression	signature (pAKT)			

Clinical trials testing everolimus in TNBC

Trial	Treatment	Setting	Class	Phase	n	pCR	Other endpoints
MDACC (Gonzalez- Angulo, ASCO 2012)	Paclitaxel +/- Everolimus Followed by FEC	neoadjuvant	TNBC	II R	50	30% vs 26%	Clinical response: T+R: 48% T: 30% P=0.075
Vanderbilt (PI: I. Mayer)	CISPLATIN + Paclitaxel +/- everolimus	Neoadjuvant	TNBC	II R	130	Ongoing (recruitment finished)	

Trend for efficacy in combination with paclitaxel Combination with cisplatin: results available soon A randomized phase II neoadjuvant study of cisplatin, paclitaxel with or without everolimus in patients with stage II/III TNBC

	Everolimus	Placebo
Evaluable Patients	82	38
pCR	35%	42%

Primary Objective: pCR

Mayer IA et al. San Antonio Breast Cancer Symposium 2013 PD 1-6

Biomarkers?

Everolimus in Bladder Cancer: a failed PFS goal

6-mo. interval

15-mo. interval

A bladder cancer patient achieving a durable (>2 years) and ongoing complete response to everolimus.

Solit D et al. Science 2012.

Genome Sequencing and Everolimus Sensitivity

1- A 2-base-pair deletion in the TSC1 gene resulting in a frameshift truncation (c1907_1908del, p.Glu836fs)

2- A nonsense mutation in the NF2 gene, creating a premature stop codon (c.836C>G, p.Ser288*)

Next-Generation Sequencing from BOLERO-2

- Exon sequence and gene copy number variations were analyzed for 182 cancer-related genes by NGS (>250x coverage)
- Archival tumor specimens (mostly primary tumors) from 227 patients (157 in everolimus arm)
- Patients with no or only 1 genetic alteration in PI3K or FGFR pathways, or CCND1, had a greater treatment effect from everolimus (HR = 0.27, 95% CI 0.18-0.41, adjusted by covariates, in 76% of the NGS population)
- PI3K mutations not predictive!

Hortobagyi GN et al. J Clin Oncol 31, 2013 (suppl; abstr LBA509).

Effect of the presence of phosphatase and tensin homolog (PTEN) loss or PIK3CA mutation (A) on overall survival and (B) progression-free survival.

Morrow P K et al. JCO 2011;29:3126-3132

Nuclear Imaging: PEARL trial

^{*} For Bordet only

- Biopsy of metastases is mandatory for patients with accessible lesions
- The second biopsy (at progression) will be taken from accessible non-metabolic responding sites
- Biopsy at FDG-PET/CT will be done only in patients with subcutaneus metastases

BIG 14-01

Aiming to Understand the Molecular Aberrations in Metastatic Breast Cancer

The AURORA PROGRAM

30 European centers 1300 patients 400 genes ctDNA RNAseq

Questions?

philippe.aftimos@bordet.be

Twitter: @aftimosp

Backup slides

Mechanisms of TORC1 activation in cancer cells

Drugs targeting mTOR pathway

Rapalogs + Her2 inhibitors: Phase I/II Data

Study/Patient population	Treatments	N	Outcome
Disease progression on/after trastuzumab (Morrow, J Clin Oncol, 2012)	Everolimus, trastuzumab (without chemotherapy)	47	Clinical benefit:34% ORR: 15%
PD on/after trastuzumab (Andre, J Clin Oncol, 2010)	Everolimus, trastuzumab, paclitaxel	33	ORR: 44%
PD on/after trastuzumab (Jerusalem, BCRT, 2011)	Everolimus, trastuzumab, vinorelbine	50	ORR: 19%
Refractory to trastuzumab AND taxanes (Dalenc, ASCO, 2011)	Everolimus, trastuzumab, paclitaxel	55	Clinical benefit:40% ORR: 20%
PD after trastu (Gajria, ASCO, 2011)	Temsirolimus / neratinib	6	4 PR / 6

mTOR inhibitors overcome resistance to trastuzumab in phase I/II trials Is it medically useful ?